
Knowledge-Based Synthesis of Numerical Programs for
Simulation of Rigid-Body Systems in Physics-Based Animation

Thomas Ellman Ryan Deak Jason Fotinatos

ellman@cs.vassar.edu rydeak@vassar.edu jafotinatos@vassar.edu

Department of Computer Science
Vassar College

Poughkeepsie, NY 12601

Abstract

Physics-based animation programs are important in a
variety of contexts, including education, science and
entertainment among others. Manual construction of such
programs is expensive, time consuming and prone to
error. We have developed a system for automatically
synthesizing physics-based animation programs for a
significant class of problems: constrained systems of rigid
bodies, subject to driving and dissipative forces. Our
system includes a graphical interface for specifying a
physical scenario, including objects, geometry, dynamical
variables and coordinate systems, along with a symbolic
interface for specifying forces and constraints operating
in the scenario. The entities defined in the graphical
interface serve as the underlying vocabulary for
specifications constructed in the symbolic interface. We
use an algorithmically controlled rewrite system to
construct a numerical simulation program that drives a
real-time animation of the specified scenario. The
algorithm operates by partitioning the constraints and
dynamic variables into classes, assigning each class to be
implemented in a different component of a general
simulation program scheme. Our approach provides
many of the benefits of formal deductive methods of
program synthesis, while keeping the computational costs
of program synthesis more in line with conventional
program generator technology. We have successfully
tested our system on numerous examples.

1. Introduction

Physics-based animation programs are important in a
variety of contexts, including education, science and
entertainment among others. For example, in education,
animation programs are used to teach the basic principles
of physics. In science, physics-based animation programs
are used to investigate the behavior of dynamical systems.
In entertainment, physics-based animation programs are
used in video games involving cars, planes and
spaceships, etc. Such programs are usually constructed by
hand, in conventional programming languages, such as
C++, possibly augmented with a physics-based animation

engine toolkit. Unfortunately, manual construction of
physics-based animation programs is expensive, time-
consuming and highly prone to error.

Our research is aimed at dealing with this problem by
applying and extending techniques of Knowledge-Based
Software Engineering. We have developed a system for
automatically synthesizing physics-based animation
programs for a significant class of problems: constrained
systems of rigid bodies, subject to driving and dissipative
forces. Our system includes a graphical interface
(implemented in the MaxScript language of 3D Studio
Max®) for specifying a physical scenario, including
objects, geometry, dynamical variables and coordinate
systems, along with a symbolic interface (implemented in
the Mathematica® programming language) for specifying
forces and constraints operating in the scenario. The
entities defined in the graphical interface serve as the
underlying vocabulary for specifications constructed in
the symbolic interface. (See Figure 1.) The system
automatically generates a C++ program that simulates the
behavior of the system specified by the developer, and
supplies time-dependent parameters to a rendering engine
that generates the animation in real time.

We undertook this research project with a conscious
intention of exploiting the well-known tradeoff between
the generality of the problem class, and the power of the
program synthesis techniques to be developed. We chose
to focus on constrained rigid-body mechanics for two
reasons. First, we wanted to address a class of problems
that is broad enough to include a variety of interesting
physical systems. For example, rigid-body systems
include vehicles such as cars, planes and sleds; articulated
structures such as robots and the human skeleton; along
with many other systems commonly appearing in physics-
based animation programs. Second, we wanted to address
a problem class that would be narrow enough to allow the
development and application of powerful, specialized
program synthesis techniques. Rigid-body animation
programs share a common general framework of
interleaved simulation and rendering steps. The
framework allows for a large number of variations

Proceedings of the 17th IEEE International Conference on Automated Software Engineering, 2002, Edinburgh, UK.

regarding the manner in which dynamical variables are
formulated and constraints are enforced. The choices
among variations are not independent. They depend on
each other in fairly complicated ways. Furthermore, the
choice among these variations often has a significant
impact on the performance of the program – an important
issue in real-time animation. Rigid-body animation thus
presents a challenging, but ultimately tractable, program
synthesis problem.

Graphical Interface

C++ Program

Animation
Program

Developer

User C++ Compiler

Geometry
Specification

Symbolic Interface

Dynamics
Specification

Figure 1. System Architecture

We synthesize rigid-body animation programs using an
algorithmically controlled rewrite system. The algorithm
operates by partitioning problem constraints and dynamic
variables into classes, assigning each class to be
implemented in a different component of a general
simulation program scheme. The system draws upon a
knowledge base of geometry, kinematics, dynamics and
numerical methods. Our approach provides many of the
benefits of a formal deductive approach to program
synthesis, such as the transparency and maintainability
that results from use of a declarative specification
language and a declarative knowledge base. On the other
hand, the computational overhead of program synthesis is
considerably lower and more in line with conventional
program generator technology. We have successfully
tested our system on numerous examples.

2. Dynamics of Rigid-Body Systems

Systems of rigid bodies are the subject of a branch of
physics known as “Analytical Dynamics” [1]. In the
formalism of Analytical Dynamics, constrained systems
of rigid bodies are governed by the Euler-Lagrange
equations. (See Figure 2.) These differential equations
include expressions involving conservative forces
(derived from a potential function, e.g., gravity),
nonconservative forces (not derived from a potential

function, e.g., dissipative and driving forces) as well as
forces derived from constraints. Two types of constraints
appear in the equations: Holonomic constraints depend
only on the values of dynamical variables, but not on their
derivatives. Nonholonomic constraints depend on both
the values and the time derivatives of dynamical
variables. Each (holonomic or nonholonomic) constraint
is associated with a Lagrange multiplier (λ or µ)
representing the force that maintains the constraint. The
Euler-Lagrange equations may be instantiated in the
context of a given rigid-body system by specifying the
following things: a set of dynamical variables; the
Lagrangian function (kinetic energy minus potential
energy); holonomic constraints; nonholonomic constraints
and nonconservative forces.

Nonconservative Forces:

Nonholonomic Constraints:
Holonomic Constraints:

Kinetic Energy:

Dynamical Variables:

Euler-Lagrange Equations:

Time Derivatives:

Potential Energy:

Lagrangian:

()n 1 i
),,(

0),(),(
0),(

),...,(
),...,(

),(
),(

),(),(

1

1

…=

=+•
=

=
=

−=

tf
tbt

tC
qq
qq

tP
T

tPTL

i

ii

i

n

n

qq
qqqa

q
q
q

q
qq

qqq

&

&

&&&

&

&

iik

p

k
k

i

j
m

j
j

ii
fa

q
C

q
L

q
L

dt
d =+

∂
∂

+
∂
∂−

∂
∂ ∑∑

== 11

µλ
&

Figure 2. Analytical Dynamics

Consider a single-car roller coaster moving on a circular
track with hills and valleys. (See Figures 3 and 4.) The
state of the car may be described by three dynamical
variables: the angle of revolution of the car around the
center of the track, the altitude of the car above the
ground, and the pitch angle of the car, which varies as the
car goes up and down hills. There are also four additional
dynamical variables, one specifying the angle of rotation
of each of the four wheels. The (gravitational) potential
energy of the car is a simple linear function of height.
Treating the car as a point mass, the kinetic energy is
(1/2)mv2 where m is the mass of the car, and v is the linear
speed of the car in the direction tangent to the car’s
location on the track. The nonconservative forces are
zero, so that the car will neither gain nor lose energy as it
moves around the track. The car’s motion is governed by
several constraints. One (holonomic) constraint asserts
that the car’s altitude varies as the track goes up and
down to keep the car’s center of gravity just above the
track surface. Another (holonomic) constraint asserts that
the car’s pitch angle varies to keep the wheels in contact
with the surface of the track. A final (nonholonomic)

constraint asserts that the car’s wheels rotate so that the
relative motion between each tire and the track is zero at
the point of contact, i.e., the car does not skid along the
surface of the track.

3. Specification of Simulation Programs

3.1 Graphical Specification

In our system, a developer specifies an animation
program through a combination of graphical and
symbolic interfaces. (See Figure 1.) The graphical
interface is implemented in MaxScript, the language of
3D Studio Max. The developer typically begins by
defining a tree-structured hierarchy of coordinate
systems. A coordinate system hierarchy for the roller
coaster animation is shown in Figure 5. The Root of the
hierarchy is the fixed, global coordinate system for the
entire scene. The CarOrigin coordinate system is a child
of the Root system. Its origin is the center of the track.
The Car coordinate system specifies the location of the
car’s center of mass. It is defined as a child of the
CarOrigin system. Coordinate systems locating the
wheels, body and canopy of the car are children of the
Car system. In addition, the Contact coordinate system is
also a child of the Car system. Its origin is the point of
contact between the front left tire and the track. After
defining a hierarchy of coordinate systems, the developer
typically proceeds to define the visual aspects of the
animation, including the geometry and light-reflecting
properties of visible objects, as well as the locations of
lights and cameras. The visible objects, lights and
cameras are attached to the leaves of the coordinate
system hierarchy.

The coordinate system hierarchy defines a vocabulary in
terms of which the developer specifies the dynamical
properties of the system to be animated. Each coordinate
system is defined in relation to its parent by a translation,
a rotation and a scaling operation. The parameters of
these transformations (translation vectors, rotation
quaternions and scaling factors) are potential variables in
the dynamical system being defined by the developer.
These transformation parameters may therefore appear in
the developer’s specification of the Lagrangian,
nonconservative forces and constraints governing the
behavior of the system. Furthermore the developer may
specify the system’s constraints in terms of any of the
coordinate systems in the hierarchy.

The coordinate system hierarchy also defines the manner
in which dynamical variables influence the visual aspects
of the scenario. In the final animation program, some of
the parent-child transformation parameters will change
over time, in response to numerical simulation of the

dynamical system. As a result of these changes in
parameters, the coordinate systems may change their
positions, orientations and/or scale measures. Since the
visible objects, lights and cameras are attached to the
leaves of the hierarchy, the positions, orientations and
sizes of these objects may change as well, resulting in an
animation of the physical scenario.

Figure 3. Roller Coaster Car

Figure 4. Roller Coaster Track

Figure 5. Roller Coaster Coordinate Hierarchy

3.2 Symbolic Specification

The symbolic interface is implemented in the
Mathematica programming language. It provides a
declarative language in which the developer specifies the
dynamics of the system to be animated. An example
specification for the roller coaster system is shown in
Figure 6. Selected primitives of the specification
language are described in Figure 7. The specification
uses the following Mathematica notation: The operator []
indicates function application. A vector is represented as
{x, y, z}. The x, y and z components of vector v are v[[1]],
v[[2]] and v[[3]]. Definitions are encoded as
transformation rules in the form Lhs -> Rhs. Each such
rule describes how an expression matching Lhs may be
replaced with the instantiation of Rhs. A pattern variable
in Lhs has an underscore at the end of its name.

The example specification is divided into several sections.
In the Initialization section, the developer specifies the
input parameters to be accepted by the simulation
program. These parameters allow the animation to be run
multiple times, with different initial states, or different
values of forces, masses or other numerical constants
appearing in the specification of the dynamics. In the
roller coaster specification, there are two input
parameters, InitialAngle and InitialOmega. These
represent the initial position of the roller coaster car (as
an angle of rotation around the center of the track) and
the initial velocity of the car (as an angular velocity). This
section also includes InitializationConstraints, i.e.,
equations that relate the input parameters to the initial
values of the dynamical variables of the system, thereby
giving semantics to the input parameters. In the roller

coaster specification, there are two initialization
constraint equations. One relates InitialAngle to the z-axis
Euler angle of the rotation of the CarOrigin coordinate
system, taken at time zero. The other relates InitialOmega
to the z-axis component of the angular velocity of the
CarOrigin coordinate system, also taken at time zero.

In the DynamicalVariables section of the specification,
the developer provides a list of the system’s dynamical
variables. Each of these variables represents a parameter
to a transformation relating a particular coordinate system
to its parent. In the roller coaster example, the
specification includes seven dynamical variables. The
variable Rz[CarOrigin] represents the rotation of the
CarOrigin coordinate system around the z-axis of its
parent, the Root system (i.e., the angle of revolution of
the car around the center of the track). The variable
Tz[Car] represents the translation of the Car coordinate
system along the z-axis of its parent, the CarOrigin
System (i.e., the vertical motion of the car up and down
hills of the track). The variable Rx[Car] represents the
rotation of the Car coordinate system around the x-axis of
its parent, the CarOrigin system (i.e., the pitch angle of
the car). Finally, the variables Rx[Wheel1],…,
Rx[Wheel4] represent rotations of the car’s wheels
around the x-axis of the Car coordinate system. (Each
rotation variable is actually a component of a unit
quaternion describing a rotation in three dimensions. A
complete quaternion has four components (Rw,Rx,Ry,Rz).
Whenever the developer includes any of Rx, Ry or Rz in
the specification, the system automatically includes Rw as
well, which is required to maintain normalization of unit
quaternions. Thus the roller coaster system actually has a
total of thirteen dynamical variables.)

In the Lagrangian section, the developer provides a
specification of the kinetic and potential energy. The
developer need not explicitly define the system’s
Lagrangian, since the general form of the Lagrangian (as
the difference of kinetic and potential energy) is
predefined in our system’s knowledge base. Instead the
developer simply states properties of the objects in the
system, which are then used to determine the manner in
which kinetic and potential energy are calculated. The
Lagrangian section includes a list of the mass-bearing
bodies along with the mass of each and an indication of
whether it should be treated as a Point mass (with
translational but not rotational kinetic energy) or an
extended Body mass (with both translational and
rotational kinetic energy). General definitions of kinetic
energy for point masses and extended bodies are
predefined in our system. In particular, the general
definition of the kinetic energy of a translating and
rotating rigid body is defined in terms of its linear

velocity, angular velocity, mass and inertia tensor. The
inertia tensors of a variety of standard shapes (e.g.,
spheres, toruses, cylinders, etc.) are predefined as well.

Initialization:
Inputs -> {InitialAngle,InitalOmega},
InitializationConstraints
 -> {EulerZ[CarOrigin][0] == InitialAngle,
 LocAV[CarOrigin][0][[3]] == InitialOmega }

Dynamical Variables:
Rz[CarOrigin], Tz[Car], Rx[Car],
Rx[Wheel1], Rx[Wheel2], Rx[Wheel3], Rx[Wheel4]

Lagrangian:
Masses -> {Car}, Mass[Car] -> 1.0,
MassType[Car] -> Point, PEType -> Unit,
PE[o_][t_] -> Mass[o]*g*AbsTrans[o][t][[3]]

Constraints:
ForAll[t,AbsTrans[Car][t][[3]] == Altitude[t]],
ForAll[t,Tan[CarPitch[t]] == Slope[t]],
ForAll[t,CPV[t][[2]] == 0],
ForAll[t,Wheel1AV[t][[1]] == Wheel2AV[t][[1]]],
ForAll[t,Wheel1AV[t][[1]] == Wheel3AV[t][[1]]],
ForAll[t,Wheel1AV[t][[1]] == Wheel4AV[t][[1]]]

Definitions:
Altitude[t_] -> Amplitude*Cos[Frequency*CarRev[t]],
Slope[t_] -> D[Altitude[t],CarRev[t]] / R,
Amplitude -> 12.5, Frequency -> 4, R -> 50.0,
CarRev[t_] -> EulerZ[CarOrigin][t],
CarPitch[t_] -> EulerX[Car][t],
Wheel1AV[t_] -> LocAV[Wheel1][t],
Wheel2AV[t_] -> LocAV[Wheel2][t],
Wheel3AV[t_] -> LocAV[Wheel3][t],
Wheel4AV[t_] -> LocAV[Wheel4][t],
CarLV[t_] -> XFormV[AbsLV[Car][t],Root,Car][t]
WAV[t_] -> XFormAV[Wheel1AV[t],Wheel1,Car][t],
ContactRV[t_] - > RelTrans[Contact,Car][t]
 - RelTrans[Wheel1,Car][t]
CPV[t_] -> CarLV[t] + Cross[WAV[t],ContactRV[t]]

Figure 6. Roller Coaster Dynamics Specification

The Lagrangian section also includes a specification of
the system’s potential energy function. Two classes of
potential energy function are supported. A Unit potential
is a sum, over all the masses, of the potential energy
contribution from each mass. A Pair potential is a sum,
over all pairs of masses, of an interaction potential for
each pair. Together these classes allow a developer to
specify most types of potential energy functions
encountered in practice, e.g., a uniform gravitational field
near the surface of the earth; an N-body Newtonian

gravitational potential; and the potential function of a
spring governed by Hooke’s law, among others. In the
roller coaster Lagrangian specification, the car is treated
as a point mass. Its potential energy is the standard linear
function of altitude that describes the uniform
gravitational field near the surface of the earth.

The Constraints section is a set of temporally quantified
equations involving dynamical variables (representing
holonomic constraints) or involving both dynamical
variables and their derivatives (representing non-
holonomic constraints). The Definitions section is a
syntactic convenience. It allows the user to define
functions that are referenced in the Constraints section. In
the roller coaster specification, there are six constraints.
The first (holonomic) constraint asserts that the altitude of
the car is equal to the height of the track at the car’s
current angle of revolution around the center of the track.
(The car is on the track.) The second (holonomic)
constraint asserts that the tangent of the car’s pitch angle
is equal to the slope of the track, at the car’s current angle
of revolution. (The wheels are in contact with the surface
of the track.) The third (nonholonomic) asserts that the
velocity of the left front wheel is zero at the point at
which the wheel makes contact with the track. (The car is
not skidding.) In the Definitions section, the contact point
velocity is expressed as a sum of two contributions: (1)
the motion of the contact point due to the car’s linear
velocity and (2) the motion of the contact point due to the
wheel’s angular velocity. The second of these two
components is a cross product of the wheel’s angular
velocity and the displacement of the contact point relative
to the center of the wheel. These velocities are
transformed into the Car coordinate system. The no-skid
constraint actually asserts that the contact point has zero
velocity along the y-axis of the Car coordinate system,
since that is the direction in which the car is moving. The
remaining constraints require the other three wheels to
have the same angular velocity as the front left wheel.
(Several additional constraints are needed in the roller
coaster specification. For each rotating coordinate system,
the system automatically adds a constraint requiring the
corresponding quaternion to be normalized. Thus the
roller coaster is governed by a total of twelve constraints.)

Rules implementing selected primitives in our
specification language are shown in Figure 8. These rules
use additional Mathematica notation: A rule of the form
Lhs /; Cond := Rhs asserts that an expression matching
Lhs and satisfying condition Cond can be replaced with
the instantiation of Rhs. The expression Dt[f[t],t] is the
total derivative of f with respect to t. The expression
Grad[f[{x,y,z}],Cartesian[x,y,z]] is the gradient of f in
Cartesian coordinates. The expression E /. R indicates the
application of rule set R to expression E.

• Tx[o][t], Ty[o][t], Tz[o][t], Rx[o][t], Ry[o][t],
Rz[o][t], Sx[o][t], Sy[o][t], Sz[o][t]: The translation,
rotation or scale of an object o, relative to it’s parent,
at time t.

• Masses: A list of all the mass-bearing objects.
• MassType[o]: The mass type of object o: Point for

point masses and Body for extended bodies.
• PEType: The type of potential energy function that

governs the system: Unit or Pair.
• Mass[o], InertiaTensor[o]: The mass of an object o

and its inertia tensor.
• KE[t], KE[o][t]: Total kinetic energy and kinetic

energy of object o, at time t.
• PE[t], PE[o][t], PE[a,b][t]: Total potential energy,

potential energy of object o, and interaction potential
of objects a and b, at time t.

• AbsTrans[o][t], AbsRot[o][t], AbsScale[o][t]: The
position, rotation or scale of an object o in the root
coordinate system, at time t.

• RelTrans[a,b][t], RelRot[a,b][t], RelScale[a,b][t]:
The position, rotation or scale of object a relative to
object b, at time t.

• AbsLV[o][t], AbsAV[o][t]: The linear or angular
velocity of object o in the root coordinate system, at
time t.

• LocLV[o][t], LocAV[o][t]: The linear or angular
velocity of object o in its own coordinate system, at
time t.

• EulerX[o][t], EulerY[o][t], EulerZ[o][t]: The x, y
or z Euler angle of the rotation of object o relative to
its parent, at time t.

• XfnP[p,f,g][t], XfnV[v,f,g][t], XfnAV[w,f,g][t],
XfnN[n,f,g][t]: A position, linear velocity, angular
velocity or normal vector transformed from
coordinate system f to coordinate system g, at time t.

• LocNormal[s,p]: The unit vector normal to surface s
at relative location p, in the coordinate system of s.

• AbsNormal[s,p][t]: The unit vector normal to
surface s at absolute location p, in the root coordinate
system, at time t.

• Contains[s,o][t]: A predicate asserting that object
o’s origin lies in surface s, at time t.

Figure 7. Selected Specification Language Primitives

First consider the rules implementing the Lagrangian:
Potential energy is either a sum over individual masses
(Unit potential) or a sum over pairs of masses (Pair
potential). An object’s potential energy usually depends
on its absolute translation. This is computed by applying
translation, rotation and scaling transformations along the
path from the object to the root of the coordinate system
hierarchy. Total kinetic energy is a sum of the kinetic

energies of the masses, including translational energy for
point masses and both translational and rotational energy
for extended bodies. The translational kinetic energy of
an object depends on its absolute linear velocity, i.e., the
derivative of its absolute translation. Both kinetic and
potential energy depend on parameters (Tx, Ty, Tz, Rx,
Ry, Rz, Sx, Sy, Sz) of transformations in the coordinate
system hierarchy, or their derivatives, some of which may
be dynamical variables.

Implementing the Lagrangian:
Lagrangian[t_] := KE[t] - PE[t]
KE[t_] := Sum[KE[Masses[[m]]][t],{m, NumMasses}]
KE[o_][t_] := TKE[o][t] + RKE[o][t]
TKE[o_][t_] := (1/2) * Mass[o] * (AbsLV[o][t])^2
RKE[o_][t_] /; MassType[o] == Point := 0
RKE[o_][t_] /; MassType[o] == Body
 := (1/2)Mass[o]
 * LocAV[o][t] . InertiaTensor[o] . LocAV[o][t]
PE[t_] /; PEType == Unit
 := Sum[PE[Masses[[m]]][t],{m,NumMasses}]
PE[t_] /; PEType == Pair
 := Sum[PE[Masses[[m1]],Masses[[m2]]][t],
 {m1,NumMasses},{m2,NumMasses}]
AbsLV[o_][t_] := Dt[AbsTrans[o][t], t]
AbsTrans[o_][t_] := RelTrans[o, Root][t]
RelTrans[o_,o_][t_] := ZeroVector
RelTrans[o1_,o2_][t_] /; o1 =!= o2
 := ApplyTrans[RelTrans[Parent[o1], o2][t],
 ApplyRot[RelRot[Parent[o1], o2][t],
 ApplyScale[RelScale[Parent[o1], o2][t],
 Trans[o1][t]]]]
Trans[o_][t_] := {Tx[o][t], Ty[o][t], Tz[o][t]}

Implementing Constraints:
Contains[s_, o_][t_]
 := SurfFn[s][XfnP[AbsTrans[o][t],Root,s][t]] == 0
AbsNormal[s_][p_][t_]
 := XfnN[LocNormal[s][XfnP[p,Root,s][t]],s,Root][t]
LocNormal[s_][{a_, b_, c_}]
 := Normalize[Grad[SurfFn[s][{x, y, z}],
 Cartesian[x, y, z]] /. {x->a, y->b, c->z}]
XfnP[p_,f_,g_][t_]
 := XfnPDown[XfnPUp[p,f,LCA[f,g]][t], LCA[f,g],g][t]
XfnPUp[p_,f_,lca_][t_]
 := ApplyTrans[RelTrans[f,lca][t],
 ApplyRot[RelRot[f,lca][t],
 ApplyScale[RelScale[f,lca][t],p]]]
XfnPDown[p_,lca_,g_][t_]
 := ApplyScale[RelScaleInv[g,lca][t],
 ApplyRot[RelRotInv[g,lca][t],
 ApplyTrans[RelTransInv[g,lca][t],p]]]

Figure 8. Rules Implementing Selected Primitives

Now consider the rules for implementing constraints.
One rule implements a predicate asserting that a point lies
in an implicit surface, i.e., a surface defined by a function
of the form f(x,y,z)=0. Another rule describes how to
compute the unit vector normal to a surface at a point, by
evaluating the gradient of the defining function f, and
then normalizing the result. These rules depend on
techniques for transforming vectors between coordinate
systems. A position vector p is transformed from
coordinate system f to coordinate system g by finding the
least common ancestor a of f and g; transforming p from f
to a; and then transforming the result from a to g. These
primitives can be used together to assert that one surface
is tangent to another surface. Tangency is useful in
defining constraints asserting that one object slides or
rolls across another.

4. Rigid-Body Simulation Programs

Real-time physics-based animation programs typically
operate by repeating the following two steps: (1)
Numerically simulate the behavior of the rigid-body
system over a short period of time; (2) Render an image
of the current state of the system. In order for this process
to operate in real time, the simulation step must be fast
enough to be executed many times per second. This has
important implications for the program synthesis process.

The general scheme of a program for simulating a
constrained rigid-body system is shown in Figure 9. The
main program begins by solving the initial position and
velocity constraints for the initial values of the position
and velocity variables. The main loop repeatedly calls a
numerical integration routine to integrate a set of
dynamical variables over a short time interval. The
integration routine solves a set of differential equations
that are first-order in some variables and second-order in
other variables. It takes a system derivative function as a
parameter and calls this derivative function repeatedly
during the numerical integration process. After each
integration step, the main loop calls a stabilization routine
that adjusts the values of some dynamical variables in
order to maintain numerical stability. After stabilization,
it updates the values of other dynamical variables by
solving algebraic constraints.

In our simulation program scheme, the dynamical
variables have been partitioned into three groups: P0, P1
and P2. Each variable group is handled in a different
component of the simulation program scheme. Likewise,
the constraints have been partitioned into three groups:
C0, C1 and C2. Each constraint is enforced in a different
component of the simulation program scheme. Variables
in the group P0 (zeroth-order variables) are updated at the

end of each simulation step, by solving constraints in the
group C0. Variables in the groups P1 and P2 are updated
by numerical integration. Groups P1 (first-order variables)
and P2 (second-order variables) differ in the way they
appear in the integration process. The variables of
integration include P1 and P2 along with the derivatives
P2’ of variables in P2, but not the derivatives of variables
in P1. The system derivative function takes the variables
of integration (P1, P2 and P2’) as input and computes their
derivatives (P1’, P2’ and P2’’). The derivatives in P1’
(velocities of variables in group P1) are computed by
solving the derivatives C1’ of constraints in group C1. The
derivatives in P2’ (velocities of variables in group P2) are
obtained from the input to the system derivative function.
The derivatives in P2’’ (accelerations of variables in
group P2) are computed by solving the Euler-Lagrange
equations, and the second derivatives C2’’ of constraints
in group C2.

EL……………... Euler-Lagrange equations.
CIP, CIV………. Initial position / velocity constraints.
P0, P1, P2 ……… 0th, 1st and 2nd order variables.
P1’, P2’, P2’’....… Derivatives of variables in P1 and P2.
C0, C1, C2……… 0th, 1st and 2nd order constraints.
C1’, C2’, C2’’...… Derivatives of constraints in C1 and C2.

Derivative(P1,P2,P2’,t):
a. Solve equations in EL and constraints in C2’’ for

variables in P2’’.
b. Solve constraints in C1’ for variables in P1’.
c. Return (P1’,P2’,P2’’).

Stabilize(P1,P2,P2’):
a. Adjust variables in P1, P2 and P2’ to satisfy

constraints in C1, C2 and C2’.
b. Return (P1,P2,P2’).

Step(P0,P1,P2,P2’,t,dT):
a. (P1,P2,P2’) = Integrate(P1,P2,P2’,t,dT,Derivative).
b. (P1,P2,P2’) = Stabilize(P1,P2,P2’).
c. Solve constraints in C0 for variables in P0.
d. Return (P0,P1,P2,P2’).

Main Program:
1. Solve constraints CIP for variables in P0, P1 and P2.
2. Solve constraints CIV for variables in P2'.
3. Render(P0,P1,P2).
4. Let t = 0.
5. Repeat:

a. (P0,P1,P2,P2’) = Step(P0,P1,P2,P2’,t,dT).
b. Let t = t + dT.
c. Render(P0,P1,P2).

Figure 9. Simulation Program Scheme

The performance of the simulation program depends on
the manner in which the dynamical variables and
constraints are partitioned into the groups described
above. In order to see why, consider the following: In the
context of real-time animation, the system derivative
function must be evaluated many times per second. When
a rigid-body system includes more than a few variables,
the system derivative usually cannot be solved
analytically. Instead, it must be computed by solving a
system of linear equations whose size is equal to the
number of second-order dynamical variables |P2| plus the
number of second-order constraints |C2|. Solving the
linear system is an O(n3) process, where n = |P2|+|C2| is
the size of the linear system. We should therefore expect
the performance of the simulation process to degrade
rapidly if n becomes too large. On the other hand,
performance will improve to the extent that we can
formulate the simulation program in a way that places
more variables in groups P0 and P1 (rather than P2) and
more constraints in groups C0 and C1 (rather than C2), i.e.,
when constraints and variables are handled outside of the
integration process, or when they are represented in terms
of their first, rather than second derivatives.

Our simulation programs incorporate several routines
from the Numerical Recipes [2] library, including a
Runge-Kutta routine for integration of differential
equations; an LU decomposition routine for solving
systems of linear algebraic equations, and a Newton-
Raphson routine for solving systems of nonlinear
algebraic equations. We also use a modified version of
the Newton-Raphson routine to solve under-constrained
systems of nonlinear algebraic equations, in the program
component that maintains the numerical stability of the
simulation process. Our approach to simulation of rigid-
body systems is based on numerical techniques described
in [3]; however, we use a Runge-Kutta method, rather
than a predictor-corrector method, for carrying out the
main integration step. We also use a different method of
maintaining numerical stability.

5. Synthesis of Simulation Programs

A number of questions must be answered in order to
synthesize programs instantiating our simulation program
scheme:

• Handling of dynamical variables: For each

dynamical variable, can it be placed in group P0 and
updated outside the numerical integration process? If
not, can it be placed in group P1 so that the variable
appears in the integration, but its derivative does not?
Or must it be placed in group P2 so that the variable
and its first derivative both appear in the integration?

• Handling of constraints: For each constraint, can it
be placed in group C0 and enforced outside of the
integration process in constraining variables in group
P0? If not, can it be placed in group C1 and enforced
inside the integration process by constraining first
derivatives of variables in group P1? Or must it be
placed in group C2, enforced during the integration
process by constraining second derivatives of
variables in group P2, and appear in the Euler-
Lagrange equations?

• Solution methods: What computational method
should be used to solve each equation or enforce
each constraint? Analytic solution? Numeric
solution? If numeric, what numerical method should
be used?

• Decomposition: Can the numerical integration or
any of the numerical equation or constraint solutions
be decomposed into components that can be solved
independently of each other? (We have addressed
only the first three groups of questions in our work to
date. We plan to investigate decomposition
techniques in our future work.)

Our program synthesis algorithm is outlined in Figure 10.
The algorithm begins by constructing an initial version of
the Lagrangian, based on the input specification. The
main part of the algorithm concerns partitioning of
dynamical variables into classes P0, P1 and P2 and
partitioning constraints into classes C0, C1 and C2, based
on the analytic solvability of groups of constraints and
their derivatives. Along the way, the constraints are
rewritten into equivalent forms referencing smaller sets of
variables. The Euler-Lagrange equations are formulated
to include a subset of the original constraints and a subset
of the original variables.

The behavior of our program synthesis algorithm can be
illustrated by considering the roller coaster example. In
the initial formulation, the roller coaster specification has
thirteen dynamical variables and twelve constraints.
These sets of variables and constraints are classified in
the following way: In step (3b), the car altitude constraint
is solved analytically to obtain a value of the dynamical
variable Tz[Car] as a function of the car’s angle of
revolution around the center of the track. The altitude
constraint is placed in the constraint group C0, and the
variable Tz[Car] is placed in the variable group P0. The
variable Tz[Car] is eliminated from the Lagrangian. On
the other hand, the car pitch angle constraint (on variables
Rw[Car] and Rx[Car]) and the associated quaternion
normalization constraint do not yield a unique analytic
solution for the pitch angle. Nevertheless, in step (3c), the
first derivative of these constraints is found to have a
unique analytic solution. The pitch angle and quaternion
normalization constraints are placed in constraint group

C1 and the variables Rw[Car] and Rx[Car] are placed in
variable group P1. Since the Lagrangian does not depend
on the derivative of the pitch angle, it is not further
revised in this step. In a similar manner, all of the wheel
rotation constraints, and (the derivatives of) their
associated quaternion normalization constraints, are
solved analytically. All of the wheel rotation constraints
are placed in constraint group C1, and all of the wheel
rotation variables are placed in variable group P1. Once
again, since the Lagrangian does not depend on the
derivatives of the wheel rotation variables, it is not further
revised at this point. Finally, in step (3d), the variables
Rw[CarOrigin] and Rz[CarOrigin] are placed in the
group P2, and the quaternion normalization constraint
associated with these variables is placed in constraint
group C2. A naïve implementation of the roller coaster
would have placed all 13 variables in group P2 and all 12
constraints in group C2, resulting in a system derivative
function that solves a linear system of 25 equations and
unknowns. After classifying the variables and constraints
as described above, computation of the system derivative
requires solving several linear systems, the largest of
which has 3 equations and unknowns, and each of which
is small enough to be solved analytically.

The final step in program synthesis is to generate C++
code implementing each component of the simulation
program scheme. Generation of code is carried out by
instantiating several predefined schemata. Each schema
describes a function that solves one or more sets of
equations. The instantiation process begins by
determining whether an analytic solution is available. If
so, the analytic solution is incorporated directly into the
function schema using a procedure that converts algebraic
Mathematica expressions into equivalent C++ strings. If a
numerical solution method is required, the system
chooses an appropriate method (e.g., LU decomposition
for linear equations or Newton-Raphson for nonlinear
equations) and generates code that calculates the data
used in the selected method (e.g., a matrix for LU
decomposition or an array of residual values for Newton-
Raphson), again by converting algebraic Mathematica
expressions to C++ strings for each matrix or array entry.
Many large and complicated sub-expressions appear in
multiple locations in the resulting code. For this reason,
we carry out an optimization step that identifies repeated
sub-expressions, stores them in temporary variables, and
arranges for their values to be referenced whenever they
are needed.

Our system is implemented in Mathematica, using its
facilities for algorithmically manipulating and applying
transformation rules. Most of the implementation consists
of purely declarative rules implementing knowledge of
kinematics (reasoning about coordinate systems,

coordinate transformations, velocities, angular velocities,
kinetic energy and potential energy, and for constructing
the Lagrangian function); geometry (formulating
constraints involving surfaces, normal vectors and contact
between surfaces); dynamics (constructing the Euler-
Lagrange equations) and numerical methods (selecting
methods for solving equations and constraints). The
algorithmic portion of our system includes the procedure
for classifying variables and constraints, and the
procedures for generating C++ code, both of which use
some imperative features of the Mathematica language.
Our system also uses Mathematica’s tools for symbolic
differentiation, analytic solution of algebraic equations,
and simplification of algebraic expressions.

1. Let V be the set of all dynamical variables and C be

the set of all constraints.
2. Construct the system Lagrangian L by expanding the

definitions of kinetic and potential energy.
3. Partition V into classes P0, P1 and P2 and partition C

into classes C0, C1 and C2:
a. Partition C into holonomic constraints H and

nonholonomic constraints N, based on
whether they depend on derivatives of
dynamical variables.

b. Find the largest P0 ⊆ V and C0 ⊆ H such
that C0 can be solved analytically for P0 in
terms of variables in V-P0. Let V=V-P0. Let
V' be the derivatives of variables in V. Let
H=H-C0. Let H' be the derivatives of
constraints in H. Rewrite H' and N to be free
of variables in P0 and their derivatives.

c. Find the largest P1 ⊆ V and C1' ⊆ H'∪ N
such that C1' can be solved analytically for
P1' in terms of variables in V∪ (V'-P1'). Let
P2=V-P1. Let C2'=(H'∪ N)-C1'. Let C2'' be the
derivatives of the constraints in C2'. Rewrite
C2' and C2'' to be free of variables in P1' and
their derivatives.

4. Construct the Euler-Lagrange equations EL from the
Lagrangian L and constraints C2', all of which are
nonholonomic, since the holonomic ones were
differentiated with respect to time. Rewrite EL to be
free of variables in P0 and P1' and their derivatives,
using formulae obtained from solving constraints in
C0 and C1' above.

5. Generate code for each of the program components
in the simulation program scheme: For each
component that solves a system of equations, use an
analytic solution, if possible. Otherwise, if the
equations are linear, use a numerical method for
solving linear equations. Otherwise use a numerical
routine for solving nonlinear equations.

Figure 10. Program Synthesis Algorithm

6. Experimental Results

Our system has been successfully tested on roughly a
dozen qualitatively distinct example problems. A
summary of these results is shown in Figure 11. In each
of these example programs, the developer carried out the
following steps: (1) Enter the graphical and symbolic
components of the specification; (2) Execute the program
synthesis algorithm; (3) Compile the generated C++ code;
(4) Execute the resulting animation program. The
program synthesis phase takes a period of time ranging
from about 30 seconds on the simplest problems to about
25 minutes on the most complicated. We have not made
any great effort to optimize the speed of our program
synthesis system. We therefore expect that these times
may be considerably reduced in future implementations
of our system.

• Pendulum: Demonstrates basic system operation.
• Double Pendulum: One pendulum hangs off

another. Demonstrates coordinate system hierarchy.
• Three Body Planetary System: Demonstrates use of

a Newtonian gravitational potential.
• Two Spring-Coupled Pendula: Two pendula are

linked by a spring. Demonstrates use of a potential
describing Hooke’s law.

• Two Rigidly Linked Pendula: Two pendula are
linked by a rigid rod. Demonstrates handling of
constraint systems forming a graph, not a tree.

• Pendula on Spinning Wheel: Four pendula are
attached to wheel spinning with uniform angular
velocity. Demonstrates use of a time-dependent
holonomic constraint.

• Nested Rolling Toruses: One torus rolls along the
inner circumference of a second torus, which rolls
along the inner circumference of a third torus.
Demonstrates nonholonomic constraints.

• Weighted Ball Rolling on Plane: Ball with off-
center weight rolls erratically across a plane.
Demonstrates rotation in three dimensions.

• Torus Rolling on Plane: Tilted torus rolls and spins
on plane. Demonstrates use of a dummy object to
track a point of contact between two surfaces.

• Ball Rolling Inside Torus: A ball rolls on the
interior surface of a torus. Demonstrates rolling
contact between two implicit surfaces.

• Single-Car Roller Coaster: Demonstrates
partitioning of variables and constraints.

• Multi-Car Sliding Coaster: Five cars and no
wheels. Constraints enforce fixed distances between
cars.

Figure 11. Summary of Experimental Results

Figure 12. Acrobat on Trapeze

Figure 13. Dancing Snowman

The reader may come away with the impression that the
example programs described in Figure 11 are mere
exercises in basic mechanics. This is partly true; however,
our most dramatic programs result from exploiting the
manner in which the dynamical variables of simulation
are linked to the visual aspects of a physical scenario.
Recall that the developer may attach arbitrary visual
objects (surfaces, lights and cameras) to the leaves of the

coordinate system hierarchy defined in the graphical
interface. As the simulation unfolds over time, the
positions, sizes and orientations of these objects may
change as well. The user may view the scene from the
point of view of any of the cameras. Some of the resulting
effects are illustrated in Figures 12 and 13. With the right
choice of geometry, lights and cameras, the double
pendulum becomes an “Acrobat on Trapeze”, and the ball
with off-center weight rolling erratically on a plane
becomes a “Dancing Snowman”.

7. Related Work

A number of other investigators have also developed
automated program synthesis techniques for scientific and
numerical computation. The Synapse, Agnes and Ctadel
systems are similar to the one we have developed in our
work. These systems synthesize programs for solving
certain types of partial differential equations (PDEs).
Synapse [4] constructs finite element codes, using a
knowledge base of transformation rules implemented in
Mathematica. Agnes [5] constructs numerical codes by
matching input equations to templates, in order to choose
an appropriate solution method. Ctadel [6] generates
code that runs on sequential, vector and shared virtual and
distributed memory architectures. The Sigma, Amphion
and AutoBayes systems are also similar to the one we
have developed. In Sigma [7], scientific computation
problems are specified in terms of a data-flow model,
which is executed by an interpreter. In Amphion [8],
problem specifications are represented in first-order logic.
Amphion uses a deductive method to synthesize a
numerical program that meets the specification.
AutoBayes [9] generates data analysis programs from
declarative descriptions of problem variables and
probability distributions. It uses schema-guided deductive
synthesis, augmented by symbolic-algebraic computation
techniques. Nevertheless, despite these similarities, none
of these systems was designed to handle, or is capable of
handling, rigid-body simulation problems.

Methods of automating the synthesis of planning and
scheduling programs are reported in [10] and [11]. These
techniques operate, in part, by assigning each problem
constraint to be enforced in an appropriate part of the
program being generated. Despite this surface similarity,
the applications are so different (symbolic search versus
numerical simulation) that the respective program
synthesis techniques do not appear to be transferable from
either type of application to the other.

The first author’s previous work developed deductive
methods of synthesizing numerical simulation programs
for specifications composed of algebraic and differential
equations, with a focus on engineering design

applications [12]. In that work, the algebraic and
differential equations were fairly simple. The complexity
of program synthesis resulted from the variety of logical
forms of specifications and the corresponding variety of
program architectures for combining numerical codes for
integration of differential equations and finding of roots
of algebraic equations. In the present work, focusing on
synthesis of simulators for rigid-body systems, the
architecture for combining numerical codes is relatively
fixed. On the other hand, the algebraic and differential
equations themselves are much more complex.
Furthermore, the synthesis process requires the use of
specialized symbolic computation techniques for solving
algebraic equations, differentiating constraints and
simplifying expressions, which are more efficiently
carried out by specialized algorithms, as implemented in a
system like Mathematica, rather than a general theorem-
proving mechanism. Finally, in the present work, we have
addressed the problem of finding an efficient
implementation, rather than merely a correct
implementation. Standard methods of deductive synthesis
are not capable of distinguishing between two correct
implementations of differing efficiency. These differences
motivated our effort to develop the specialized methods
of manipulating the equations and assigning them to
components of the simulator architecture, as described
above.

Meta-Amphion [13] is a program synthesis system that
generates other, domain-specific, program synthesis
systems. The domain specific systems incorporate
specialized decision procedures into formal deductive
methods of program synthesis. In our work, specialized
symbolic algebra procedures are an important component
of our system’s capabilities. It would be interesting to
investigate whether a system like Meta-Amphion could
synthesize a domain-specific program synthesis system
for constructing rigid-body simulation programs, such as
the one we have presented here.

8. Contributions

Our research is a contribution to the field of Automated
Software Engineering in several different respects. To
begin with, real-time 3D animation is becoming a
progressively more important part of the software
industry. It is now commonly used in computer and video
games, as well as in many educational and scientific
application programs. As network and processor speeds
rise, we expect real-time 3D animation to commonly
appear in other contexts, such as web pages and user
interfaces to application programs. We have automated
the synthesis of an important class of real-time 3D
animation programs, i.e., those involving constrained
systems of rigid bodies. Our research is therefore a

contribution toward automating a portion of the software
engineering problem, the importance of which will grow
in the coming years. In addition, our classification-based
approach to program synthesis may be applicable to other
kinds of software, in which equations and constraints are
assigned to be handled in various components of a
relatively fixed program architecture. For example, we
believe it would be useful in the context of engineering
design problems that use a software architecture
combining numerical simulation and optimization codes,
as described in [14]. Finally, our approach illustrates a
methodology that exploits the tradeoff between the power
and the generality of a program synthesis system. Our
system is a compromise between deductive methods of
program synthesis and conventional parameter-driven
program generators. On the one hand, we have sacrificed
the generality of formal deductive synthesis. In return, we
have obtained a system in which the computational costs
of program synthesis are more in line with conventional
program generator technology. On the other hand, our
system uses a declarative specification language and a
declarative knowledge base, which provide more
maintainability and transparency than are typically seen in
conventional program generators. We expect that
approaches to program synthesis manifesting this sort of
compromise would be useful in other areas of Automated
Software Engineering as well.

9. Acknowledgements

The research reported in this paper was supported by
Vassar College through a faculty research grant and the
Undergraduate Research Summer Institute. The
anonymous referees provided thoughtful comments that
the authors found quite helpful in preparing the final
version of this paper.

10. References

[1] H. Baruh, "Analytical Dynamics", WCB/McGraw-
Hill, 1999.

[2] W. Press, W. Vetterling, S. Teukolsky, and B.
Flannery, "Numerical Recipes", Cambridge University
Press, New York, NY, 1986.

[3] E. Haug, "Computer-Aided Kinematics and Dynamics
of Mechanical Systems", Allyn & Bacon, Boston, MA,
1989.

[4] E. Kant, "Synthesis of Mathematical Modeling
Software", IEEE Software, 10, 3, 1993.

[5] A. Kowalski and R. Peskin, "Anatomy of AGNES: An
Automatic Generator of Numerical Equation Solutions",
in E. N. Houstis, Ed., Intelligent Mathematical Software
Systems, Elsevier Science Publishers, New York, NY,
1990.

[6] R. van Engelen, L. Wolters, and G. Cats,
"Tomorrow’s Weather Forecast: Automatic Code
Generation for Atmospheric Modeling", IEEE
Computational Science & Engineering, 4, 3, 1997.

[7] R. Keller, M. Rimon, and A. Das, "A Knowledge-
Based Prototyping Environment for Construction of
Scientific Modeling Software", Automated Software
Engineering, 1, 1, 1994.

[8] M. Lowry, A. Philpot, T. Pressberger, and I.
Underwood, "A Formal Approach to Domain-Oriented
Software Design Environments", Proceedings of the
Ninth Knowledge-Based Software Engineering
Conference, Monterey, CA, 1994

[9] B. Fisher and J. Schumann, "AutoBayes: A System
for Generating Data Analysis Programs from Statistical
Models", Journal of Functional Programming, 2002, in
press.

[10] B. Srivastava and S. Kambhampati, "Synthesizing
Customized Planners from Specifications", Journal of
Artificial Intelligence Research, 8, 1998.

[11] L. Blaine, L. Gilham, J. Liu, D. Smith, and S.
Westfold, "Planware -- Domain-Specific Synthesis of
High-Performance Schedulers", Proceedings of the
Thirteenth Automated Software Engineering Conference,
IEEE Computer Society Press, Los Alamitos, CA, 1998.

[12] T. Ellman and T. Murata, "Deductive Synthesis of
Numerical Simulation Programs from Networks of
Algebraic and Ordinary Differential Equations",
Automated Software Engineering, 5, 3, 1998.

[13] M. Lowry and J. Van Baalen, "Meta-Amphion:
Synthesis of Efficient Domain-Specific Program
Synthesis Systems", Automated Software Engineering, 4,
2, 1997.

[14] T. Ellman, J. Keane, A. Banerjee and G. Armhold,
"A Transformation System for Interactive Reformulation
of Design Optimization Strategies", Research in
Engineering Design, 10, 1, 1998.

