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Abstract 
 
Physics-based animation programs are important in a 
variety of contexts, including education, science and 
entertainment among others. Manual construction of such 
programs is expensive, time consuming and prone to 
error. We have developed a system for automatically 
synthesizing physics-based animation programs for a 
significant class of problems: constrained systems of rigid 
bodies, subject to driving and dissipative forces. Our 
system includes a graphical interface for specifying a 
physical scenario, including objects, geometry, dynamical 
variables and coordinate systems, along with a symbolic 
interface for specifying forces and constraints operating 
in the scenario. The entities defined in the graphical 
interface serve as the underlying vocabulary for 
specifications constructed in the symbolic interface. We 
use an algorithmically controlled rewrite system to 
construct a numerical simulation program that drives a 
real-time animation of the specified scenario. The 
algorithm operates by partitioning the constraints and 
dynamic variables into classes, assigning each class to be 
implemented in a different component of a general 
simulation program scheme. Our approach provides 
many of the benefits of formal deductive methods of 
program synthesis, while keeping the computational costs 
of program synthesis more in line with conventional 
program generator technology. We have successfully 
tested our system on numerous examples. 
 
1. Introduction 
 
Physics-based animation programs are important in a 
variety of contexts, including education, science and 
entertainment among others. For example, in education, 
animation programs are used to teach the basic principles 
of physics. In science, physics-based animation programs 
are used to investigate the behavior of dynamical systems. 
In entertainment, physics-based animation programs are 
used in video games involving cars, planes and 
spaceships, etc. Such programs are usually constructed by 
hand, in conventional programming languages, such as 
C++, possibly augmented with a physics-based animation 

engine toolkit. Unfortunately, manual construction of 
physics-based animation programs is expensive, time-
consuming and highly prone to error.  
 
Our research is aimed at dealing with this problem by 
applying and extending techniques of Knowledge-Based 
Software Engineering. We have developed a system for 
automatically synthesizing physics-based animation 
programs for a significant class of problems: constrained 
systems of rigid bodies, subject to driving and dissipative 
forces. Our system includes a graphical interface 
(implemented in the MaxScript language of 3D Studio 
Max®) for specifying a physical scenario, including 
objects, geometry, dynamical variables and coordinate 
systems, along with a symbolic interface (implemented in 
the Mathematica® programming language) for specifying 
forces and constraints operating in the scenario. The 
entities defined in the graphical interface serve as the 
underlying vocabulary for specifications constructed in 
the symbolic interface. (See Figure 1.) The system 
automatically generates a C++ program that simulates the 
behavior of the system specified by the developer, and 
supplies time-dependent parameters to a rendering engine 
that generates the animation in real time. 
 
We undertook this research project with a conscious 
intention of exploiting the well-known tradeoff between 
the generality of the problem class, and the power of the 
program synthesis techniques to be developed. We chose 
to focus on constrained rigid-body mechanics for two 
reasons. First, we wanted to address a class of problems 
that is broad enough to include a variety of interesting 
physical systems. For example, rigid-body systems 
include vehicles such as cars, planes and sleds; articulated 
structures such as robots and the human skeleton; along 
with many other systems commonly appearing in physics-
based animation programs. Second, we wanted to address 
a problem class that would be narrow enough to allow the 
development and application of powerful, specialized 
program synthesis techniques.   Rigid-body animation 
programs share a common general framework of 
interleaved simulation and rendering steps. The 
framework allows for a large number of variations 
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regarding the manner in which dynamical variables are 
formulated and constraints are enforced. The choices 
among variations are not independent. They depend on 
each other in fairly complicated ways. Furthermore, the 
choice among these variations often has a significant 
impact on the performance of the program – an important 
issue in real-time animation. Rigid-body animation thus 
presents a challenging, but ultimately tractable, program 
synthesis problem. 
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Figure 1. System Architecture 
 
We synthesize rigid-body animation programs using an 
algorithmically controlled rewrite system. The algorithm 
operates by partitioning problem constraints and dynamic 
variables into classes, assigning each class to be 
implemented in a different component of a general 
simulation program scheme. The system draws upon a 
knowledge base of geometry, kinematics, dynamics and 
numerical methods. Our approach provides many of the 
benefits of a formal deductive approach to program 
synthesis, such as the transparency and maintainability 
that results from use of a declarative specification 
language and a declarative knowledge base.  On the other 
hand, the computational overhead of program synthesis is 
considerably lower and more in line with conventional 
program generator technology. We have successfully 
tested our system on numerous examples.  
 
2. Dynamics of Rigid-Body Systems 
 
Systems of rigid bodies are the subject of a branch of 
physics known as “Analytical Dynamics” [1]. In the 
formalism of Analytical Dynamics, constrained systems 
of rigid bodies are governed by the Euler-Lagrange 
equations. (See Figure 2.) These differential equations 
include expressions involving conservative forces 
(derived from a potential function, e.g., gravity), 
nonconservative forces (not derived from a potential 

function, e.g., dissipative and driving forces) as well as 
forces derived from constraints. Two types of constraints 
appear in the equations: Holonomic constraints depend 
only on the values of dynamical variables, but not on their 
derivatives. Nonholonomic constraints depend on both 
the values and the time derivatives of dynamical 
variables. Each (holonomic or nonholonomic) constraint 
is associated with a Lagrange multiplier (λ or µ) 
representing the force that maintains the constraint. The 
Euler-Lagrange equations may be instantiated in the 
context of a given rigid-body system by specifying the 
following things: a set of dynamical variables; the 
Lagrangian function (kinetic energy minus potential 
energy); holonomic constraints; nonholonomic constraints 
and nonconservative forces.  
 

Nonconservative Forces:

Nonholonomic Constraints:
Holonomic Constraints:

Kinetic Energy:

Dynamical Variables:

Euler-Lagrange Equations:

Time Derivatives:

Potential Energy:

Lagrangian:
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Figure 2. Analytical Dynamics 
 

Consider a single-car roller coaster moving on a circular 
track with hills and valleys. (See Figures 3 and 4.) The 
state of the car may be described by three dynamical 
variables: the angle of revolution of the car around the 
center of the track, the altitude of the car above the 
ground, and the pitch angle of the car, which varies as the 
car goes up and down hills. There are also four additional 
dynamical variables, one specifying the angle of rotation 
of each of the four wheels.  The (gravitational) potential 
energy of the car is a simple linear function of height. 
Treating the car as a point mass, the kinetic energy is 
(1/2)mv2 where m is the mass of the car, and v is the linear 
speed of the car in the direction tangent to the car’s 
location on the track. The nonconservative forces are 
zero, so that the car will neither gain nor lose energy as it 
moves around the track. The car’s motion is governed by 
several constraints. One (holonomic) constraint asserts 
that the car’s altitude varies as the track goes up and 
down to keep the car’s center of gravity just above the 
track surface. Another (holonomic) constraint asserts that 
the car’s pitch angle varies to keep the wheels in contact 
with the surface of the track. A final (nonholonomic) 



constraint asserts that the car’s wheels rotate so that the 
relative motion between each tire and the track is zero at 
the point of contact, i.e., the car does not skid along the 
surface of the track.  
 
3. Specification of Simulation Programs 
 
3.1 Graphical Specification  
 
In our system, a developer specifies an animation 
program through a combination of graphical and 
symbolic interfaces. (See Figure 1.) The graphical 
interface is implemented in MaxScript, the language of 
3D Studio Max. The developer typically begins by 
defining a tree-structured hierarchy of coordinate 
systems. A coordinate system hierarchy for the roller 
coaster animation is shown in Figure 5. The Root of the 
hierarchy is the fixed, global coordinate system for the 
entire scene. The CarOrigin coordinate system is a child 
of the Root system. Its origin is the center of the track. 
The Car coordinate system specifies the location of the 
car’s center of mass. It is defined as a child of the 
CarOrigin system.  Coordinate systems locating the 
wheels, body and canopy of the car are children of the 
Car system. In addition, the Contact coordinate system is 
also a child of the Car system. Its origin is the point of 
contact between the front left tire and the track. After 
defining a hierarchy of coordinate systems, the developer 
typically proceeds to define the visual aspects of the 
animation, including the geometry and light-reflecting 
properties of visible objects, as well as the locations of 
lights and cameras. The visible objects, lights and 
cameras are attached to the leaves of the coordinate 
system hierarchy. 
 
The coordinate system hierarchy defines a vocabulary in 
terms of which the developer specifies the dynamical 
properties of the system to be animated. Each coordinate 
system is defined in relation to its parent by a translation, 
a rotation and a scaling operation. The parameters of 
these transformations (translation vectors, rotation 
quaternions and scaling factors) are potential variables in 
the dynamical system being defined by the developer. 
These transformation parameters may therefore appear in 
the developer’s specification of the Lagrangian, 
nonconservative forces and constraints governing the 
behavior of the system. Furthermore the developer may 
specify the system’s constraints in terms of any of the 
coordinate systems in the hierarchy.  
 
The coordinate system hierarchy also defines the manner 
in which dynamical variables influence the visual aspects 
of the scenario. In the final animation program, some of 
the parent-child transformation parameters will change 
over time, in response to numerical simulation of the 

dynamical system. As a result of these changes in 
parameters, the coordinate systems may change their 
positions, orientations and/or scale measures. Since the 
visible objects, lights and cameras are attached to the 
leaves of the hierarchy, the positions, orientations and 
sizes of these objects may change as well, resulting in an 
animation of the physical scenario. 
 
 

                
 

Figure 3. Roller Coaster Car  
 

 
 

Figure 4. Roller Coaster Track 
 



 
 

Figure 5. Roller Coaster Coordinate Hierarchy 
 
3.2 Symbolic Specification 
 
The symbolic interface is implemented in the 
Mathematica programming language. It provides a 
declarative language in which the developer specifies the 
dynamics of the system to be animated. An example 
specification for the roller coaster system is shown in 
Figure 6.  Selected primitives of the specification 
language are described in Figure 7.  The specification 
uses the following Mathematica notation: The operator [ ] 
indicates function application. A vector is represented as 
{x, y, z}. The x, y and z components of vector v are v[[1]], 
v[[2]] and v[[3]].  Definitions are encoded as 
transformation rules in the form Lhs -> Rhs. Each such 
rule describes how an expression matching Lhs may be 
replaced with the instantiation of Rhs. A pattern variable 
in Lhs has an underscore at the end of its name.  
 
The example specification is divided into several sections. 
In the Initialization section, the developer specifies the 
input parameters to be accepted by the simulation 
program. These parameters allow the animation to be run 
multiple times, with different initial states, or different 
values of forces, masses or other numerical constants 
appearing in the specification of the dynamics. In the 
roller coaster specification, there are two input 
parameters, InitialAngle and InitialOmega. These 
represent the initial position of the roller coaster car (as 
an angle of rotation around the center of the track) and 
the initial velocity of the car (as an angular velocity). This 
section also includes InitializationConstraints, i.e., 
equations that relate the input parameters to the initial 
values of the dynamical variables of the system, thereby 
giving semantics to the input parameters. In the roller 

coaster specification, there are two initialization 
constraint equations. One relates InitialAngle to the z-axis 
Euler angle of the rotation of the CarOrigin coordinate 
system, taken at time zero. The other relates InitialOmega 
to the z-axis component of the angular velocity of the 
CarOrigin coordinate system, also taken at time zero.  
 
In the DynamicalVariables section of the specification, 
the developer provides a list of the system’s dynamical 
variables. Each of these variables represents a parameter 
to a transformation relating a particular coordinate system 
to its parent. In the roller coaster example, the 
specification includes seven dynamical variables. The 
variable Rz[CarOrigin] represents the rotation of the 
CarOrigin coordinate system around the z-axis of its 
parent, the Root system (i.e., the angle of revolution of 
the car around the center of the track). The variable 
Tz[Car] represents the translation of the Car coordinate 
system along the z-axis of its parent, the CarOrigin 
System (i.e., the vertical motion of the car up and down 
hills of the track). The variable Rx[Car] represents the 
rotation of the Car coordinate system around the x-axis of 
its parent, the CarOrigin system (i.e., the pitch angle of 
the car). Finally, the variables Rx[Wheel1],…, 
Rx[Wheel4] represent rotations of the car’s wheels 
around the x-axis of the Car coordinate system. (Each 
rotation variable is actually a component of a unit 
quaternion describing a rotation in three dimensions. A 
complete quaternion has four components (Rw,Rx,Ry,Rz). 
Whenever the developer includes any of Rx, Ry or Rz in 
the specification, the system automatically includes Rw as 
well, which is required to maintain normalization of unit 
quaternions. Thus the roller coaster system actually has a 
total of thirteen dynamical variables.) 
 
 
In the Lagrangian section, the developer provides a 
specification of the kinetic and potential energy. The 
developer need not explicitly define the system’s 
Lagrangian, since the general form of the Lagrangian (as 
the difference of kinetic and potential energy) is 
predefined in our system’s knowledge base. Instead the 
developer simply states properties of the objects in the 
system, which are then used to determine the manner in 
which kinetic and potential energy are calculated. The 
Lagrangian section includes a list of the mass-bearing 
bodies along with the mass of each and an indication of 
whether it should be treated as a Point mass (with 
translational but not rotational kinetic energy) or an 
extended Body mass (with both translational and 
rotational kinetic energy). General definitions of kinetic 
energy for point masses and extended bodies are 
predefined in our system. In particular, the general 
definition of the kinetic energy of a translating and 
rotating rigid body is defined in terms of its linear 



velocity, angular velocity, mass and inertia tensor. The 
inertia tensors of a variety of standard shapes (e.g., 
spheres, toruses, cylinders, etc.) are predefined as well. 
 
Initialization: 
Inputs -> {InitialAngle,InitalOmega}, 
InitializationConstraints 
 -> {EulerZ[CarOrigin][0] == InitialAngle, 
       LocAV[CarOrigin][0][[3]] == InitialOmega } 
 
Dynamical Variables: 
Rz[CarOrigin], Tz[Car], Rx[Car], 
Rx[Wheel1], Rx[Wheel2], Rx[Wheel3], Rx[Wheel4] 
 
Lagrangian: 
Masses -> {Car}, Mass[Car] -> 1.0,  
MassType[Car] -> Point, PEType -> Unit,  
PE[o_][t_] -> Mass[o]*g*AbsTrans[o][t][[3]] 
 
Constraints: 
ForAll[t,AbsTrans[Car][t][[3]] == Altitude[t]], 
ForAll[t,Tan[CarPitch[t]] == Slope[t]],  
ForAll[t,CPV[t][[2]] == 0], 
ForAll[t,Wheel1AV[t][[1]] == Wheel2AV[t][[1]]], 
ForAll[t,Wheel1AV[t][[1]] == Wheel3AV[t][[1]]], 
ForAll[t,Wheel1AV[t][[1]] == Wheel4AV[t][[1]]] 
 
Definitions: 
Altitude[t_] -> Amplitude*Cos[Frequency*CarRev[t]], 
Slope[t_] -> D[Altitude[t],CarRev[t]] / R, 
Amplitude -> 12.5, Frequency -> 4, R -> 50.0, 
CarRev[t_] -> EulerZ[CarOrigin][t], 
CarPitch[t_] -> EulerX[Car][t], 
Wheel1AV[t_] -> LocAV[Wheel1][t], 
Wheel2AV[t_] -> LocAV[Wheel2][t], 
Wheel3AV[t_] -> LocAV[Wheel3][t], 
Wheel4AV[t_] -> LocAV[Wheel4][t], 
CarLV[t_] -> XFormV[AbsLV[Car][t],Root,Car][t] 
WAV[t_] -> XFormAV[Wheel1AV[t],Wheel1,Car][t], 
ContactRV[t_] - > RelTrans[Contact,Car][t] 
                              - RelTrans[Wheel1,Car][t] 
CPV[t_ ] -> CarLV[t] + Cross[WAV[t],ContactRV[t]] 
 

Figure 6. Roller Coaster Dynamics Specification 
 

The Lagrangian section also includes a specification of 
the system’s potential energy function. Two classes of 
potential energy function are supported. A Unit potential 
is a sum, over all the masses, of the potential energy 
contribution from each mass. A Pair potential is a sum, 
over all pairs of masses, of an interaction potential for 
each pair. Together these classes allow a developer to 
specify most types of potential energy functions 
encountered in practice, e.g., a uniform gravitational field 
near the surface of the earth; an N-body Newtonian 

gravitational potential; and the potential function of a 
spring governed by Hooke’s law, among others. In the 
roller coaster Lagrangian specification, the car is treated 
as a point mass. Its potential energy is the standard linear 
function of altitude that describes the uniform 
gravitational field near the surface of the earth. 
 
The Constraints section is a set of temporally quantified 
equations involving dynamical variables (representing 
holonomic constraints) or involving both dynamical 
variables and their derivatives (representing non-
holonomic constraints). The Definitions section is a 
syntactic convenience. It allows the user to define 
functions that are referenced in the Constraints section. In 
the roller coaster specification, there are six constraints. 
The first (holonomic) constraint asserts that the altitude of 
the car is equal to the height of the track at the car’s 
current angle of revolution around the center of the track. 
(The car is on the track.) The second (holonomic) 
constraint asserts that the tangent of the car’s pitch angle 
is equal to the slope of the track, at the car’s current angle 
of revolution. (The wheels are in contact with the surface 
of the track.) The third (nonholonomic) asserts that the 
velocity of the left front wheel is zero at the point at 
which the wheel makes contact with the track. (The car is 
not skidding.) In the Definitions section, the contact point 
velocity is expressed as a sum of two contributions: (1) 
the motion of the contact point due to the car’s linear 
velocity and (2) the motion of the contact point due to the 
wheel’s angular velocity. The second of these two 
components is a cross product of the wheel’s angular 
velocity and the displacement of the contact point relative 
to the center of the wheel. These velocities are 
transformed into the Car coordinate system. The no-skid 
constraint actually asserts that the contact point has zero 
velocity along the y-axis of the Car coordinate system, 
since that is the direction in which the car is moving. The 
remaining constraints require the other three wheels to 
have the same angular velocity as the front left wheel. 
(Several additional constraints are needed in the roller 
coaster specification. For each rotating coordinate system, 
the system automatically adds a constraint requiring the 
corresponding quaternion to be normalized. Thus the 
roller coaster is governed by a total of twelve constraints.) 
 
Rules implementing selected primitives in our 
specification language are shown in Figure 8.  These rules 
use additional Mathematica notation: A rule of the form 
Lhs /; Cond := Rhs asserts that an expression matching 
Lhs and satisfying condition Cond can be replaced with 
the instantiation of Rhs. The expression Dt[f[t],t] is the 
total derivative of f with respect to t. The expression 
Grad[f[{x,y,z}],Cartesian[x,y,z]] is the gradient of f in 
Cartesian coordinates. The expression E /. R indicates the 
application of rule set R to expression E. 



• Tx[o][t], Ty[o][t], Tz[o][t], Rx[o][t], Ry[o][t], 
Rz[o][t], Sx[o][t], Sy[o][t], Sz[o][t]: The translation, 
rotation or scale of an object o, relative to it’s parent, 
at time t.  

• Masses: A list of all the mass-bearing objects.  
• MassType[o]: The mass type of object o: Point for 

point masses and Body for extended bodies.  
• PEType: The type of potential energy function that 

governs the system: Unit or Pair. 
• Mass[o], InertiaTensor[o]: The mass of an object o 

and its inertia tensor. 
• KE[t], KE[o][t]: Total kinetic energy and kinetic 

energy of object o, at time t.  
• PE[t], PE[o][t], PE[a,b][t]: Total potential energy, 

potential energy of object o, and interaction potential 
of objects a and b, at time t.  

• AbsTrans[o][t], AbsRot[o][t], AbsScale[o][t]: The 
position, rotation or scale of an object o in the root 
coordinate system, at time t.  

• RelTrans[a,b][t], RelRot[a,b][t], RelScale[a,b][t]: 
The position, rotation or scale of object a relative to 
object b, at time t.  

• AbsLV[o][t], AbsAV[o][t]: The linear or angular 
velocity of object o in the root coordinate system, at 
time t.  

• LocLV[o][t], LocAV[o][t]: The linear or angular 
velocity of object o in its own coordinate system, at 
time t.  

• EulerX[o][t], EulerY[o][t], EulerZ[o][t]: The x, y 
or z  Euler angle of the rotation of object o relative to 
its parent, at time t.  

• XfnP[p,f,g][t], XfnV[v,f,g][t], XfnAV[w,f,g][t], 
XfnN[n,f,g][t]: A position, linear velocity, angular 
velocity or normal vector transformed from 
coordinate system f to coordinate system g, at time t.  

• LocNormal[s,p]: The unit vector normal to surface s 
at relative location p,  in the coordinate system of s.  

• AbsNormal[s,p][t]: The unit vector normal to 
surface s at absolute location p, in the root coordinate 
system, at time t.  

• Contains[s,o][t]: A predicate asserting that object 
o’s origin lies in surface s, at time t.  

 
Figure 7. Selected Specification Language Primitives 
 
 
First consider the rules implementing the Lagrangian: 
Potential energy is either a sum over individual masses 
(Unit potential) or a sum over pairs of masses (Pair 
potential). An object’s potential energy usually depends 
on its absolute translation. This is computed by applying 
translation, rotation and scaling transformations along the 
path from the object to the root of the coordinate system 
hierarchy. Total kinetic energy is a sum of the kinetic 

energies of the masses, including translational energy for 
point masses and both translational and rotational energy 
for extended bodies. The translational kinetic energy of 
an object depends on its absolute linear velocity, i.e., the 
derivative of its absolute translation. Both kinetic and 
potential energy depend on parameters (Tx, Ty, Tz, Rx, 
Ry, Rz, Sx, Sy, Sz) of transformations in the coordinate 
system hierarchy, or their derivatives, some of which may 
be dynamical variables.  
 
 
Implementing the Lagrangian: 
Lagrangian[t_] := KE[t] - PE[t] 
KE[t_] := Sum[KE[Masses[[m]]][t],{m, NumMasses}] 
KE[o_][t_] := TKE[o][t] + RKE[o][t] 
TKE[o_][t_] := (1/2) * Mass[o] * (AbsLV[o][t])^2 
RKE[o_][t_] /; MassType[o] == Point := 0 
RKE[o_][t_] /; MassType[o] == Body  
  := (1/2)Mass[o] 
      * LocAV[o][t] . InertiaTensor[o] . LocAV[o][t] 
PE[t_] /; PEType == Unit  
  := Sum[PE[Masses[[m]]][t],{m,NumMasses}] 
PE[t_] /; PEType == Pair  
  := Sum[PE[Masses[[m1]],Masses[[m2]]][t], 
              {m1,NumMasses},{m2,NumMasses}] 
AbsLV[o_][t_] := Dt[AbsTrans[o][t], t]  
AbsTrans[o_][t_] := RelTrans[o, Root][t]  
RelTrans[o_,o_][t_] := ZeroVector 
RelTrans[o1_,o2_][t_] /; o1 =!= o2  
 := ApplyTrans[RelTrans[Parent[o1], o2][t],  
      ApplyRot[RelRot[Parent[o1], o2][t],  
        ApplyScale[RelScale[Parent[o1], o2][t], 
                                           Trans[o1][t]]]] 
Trans[o_][t_] := {Tx[o][t], Ty[o][t], Tz[o][t]} 
 
Implementing Constraints:  
Contains[s_, o_][t_] 
  := SurfFn[s][XfnP[AbsTrans[o][t],Root,s][t]] == 0 
AbsNormal[s_][p_][t_]  
  := XfnN[LocNormal[s][XfnP[p,Root,s][t]],s,Root][t] 
LocNormal[s_][{a_, b_, c_}]  
  := Normalize[Grad[SurfFn[s][{x, y, z}],  
                         Cartesian[x, y, z]]  /. {x->a, y->b, c->z}] 
XfnP[p_,f_,g_][t_] 
 := XfnPDown[XfnPUp[p,f,LCA[f,g]][t], LCA[f,g],g][t] 
XfnPUp[p_,f_,lca_][t_] 
 := ApplyTrans[RelTrans[f,lca][t], 
                      ApplyRot[RelRot[f,lca][t], 
                                   ApplyScale[RelScale[f,lca][t],p]]] 
XfnPDown[p_,lca_,g_][t_] 
 := ApplyScale[RelScaleInv[g,lca][t], 
                  ApplyRot[RelRotInv[g,lca][t], 
                              ApplyTrans[RelTransInv[g,lca][t],p]]] 
 
Figure 8. Rules Implementing Selected Primitives 



Now consider the rules for implementing constraints.  
One rule implements a predicate asserting that a point lies 
in an implicit surface, i.e., a surface defined by a function 
of the form f(x,y,z)=0. Another rule describes how to 
compute the unit vector normal to a surface at a point, by 
evaluating the gradient of the defining function f, and 
then normalizing the result. These rules depend on 
techniques for transforming vectors between coordinate 
systems. A position vector p is transformed from 
coordinate system f to coordinate system g by finding the 
least common ancestor a of f and g; transforming p from f 
to a; and then transforming the result from a to g. These 
primitives can be used together to assert that one surface 
is tangent to another surface. Tangency is useful in 
defining constraints asserting that one object slides or 
rolls across another.  
 
4. Rigid-Body Simulation Programs 
 
Real-time physics-based animation programs typically 
operate by repeating the following two steps: (1) 
Numerically simulate the behavior of the rigid-body 
system over a short period of time; (2) Render an image 
of the current state of the system. In order for this process 
to operate in real time, the simulation step must be fast 
enough to be executed many times per second. This has 
important implications for the program synthesis process.  
 
The general scheme of a program for simulating a 
constrained rigid-body system is shown in Figure 9. The 
main program begins by solving the initial position and 
velocity constraints for the initial values of the position 
and velocity variables. The main loop repeatedly calls a 
numerical integration routine to integrate a set of 
dynamical variables over a short time interval. The 
integration routine solves a set of differential equations 
that are first-order in some variables and second-order in 
other variables. It takes a system derivative function as a 
parameter and calls this derivative function repeatedly 
during the numerical integration process. After each 
integration step, the main loop calls a stabilization routine 
that adjusts the values of some dynamical variables in 
order to maintain numerical stability. After stabilization, 
it updates the values of other dynamical variables by 
solving algebraic constraints. 
 
In our simulation program scheme, the dynamical 
variables have been partitioned into three groups: P0, P1 
and P2. Each variable group is handled in a different 
component of the simulation program scheme. Likewise, 
the constraints have been partitioned into three groups: 
C0, C1 and C2. Each constraint is enforced in a different 
component of the simulation program scheme.  Variables 
in the group P0 (zeroth-order variables) are updated at the 

end of each simulation step, by solving constraints in the 
group C0. Variables in the groups P1 and P2 are updated 
by numerical integration. Groups P1 (first-order variables) 
and P2 (second-order variables) differ in the way they 
appear in the integration process. The variables of 
integration include P1 and P2 along with the derivatives 
P2’ of variables in P2, but not the derivatives of variables 
in P1. The system derivative function takes the variables 
of integration (P1, P2 and P2’) as input and computes their 
derivatives (P1’, P2’ and P2’’). The derivatives in P1’ 
(velocities of variables in group P1) are computed by 
solving the derivatives C1’ of constraints in group C1. The 
derivatives in P2’ (velocities of variables in group P2) are 
obtained from the input to the system derivative function. 
The derivatives in P2’’ (accelerations of variables in 
group P2) are computed by solving the Euler-Lagrange 
equations, and the second derivatives C2’’ of constraints 
in group C2. 
 
EL……………... Euler-Lagrange equations. 
CIP, CIV………. Initial position / velocity constraints. 
P0, P1, P2 ……… 0th, 1st  and 2nd  order variables. 
P1’, P2’, P2’’....… Derivatives of variables in P1 and P2.  
C0, C1, C2……… 0th, 1st and 2nd  order constraints. 
C1’, C2’, C2’’...… Derivatives of constraints in C1 and C2. 
 
Derivative(P1,P2,P2’,t): 
a. Solve equations in EL and constraints in C2’’ for 

variables in P2’’.  
b. Solve constraints in C1’ for variables in P1’.  
c. Return (P1’,P2’,P2’’). 
 
Stabilize(P1,P2,P2’): 
a. Adjust variables in  P1, P2 and P2’ to satisfy 

constraints in C1, C2 and C2’. 
b. Return (P1,P2,P2’). 
 
Step(P0,P1,P2,P2’,t,dT): 
a. (P1,P2,P2’) = Integrate(P1,P2,P2’,t,dT,Derivative). 
b. (P1,P2,P2’) = Stabilize(P1,P2,P2’). 
c. Solve constraints in C0 for variables in P0. 
d. Return (P0,P1,P2,P2’). 
 
Main Program: 
1. Solve constraints CIP for variables in P0, P1 and P2.  
2. Solve constraints CIV for variables in P2'.  
3. Render(P0,P1,P2). 
4. Let t = 0. 
5. Repeat: 

a. (P0,P1,P2,P2’) = Step(P0,P1,P2,P2’,t,dT). 
b. Let t = t + dT. 
c. Render(P0,P1,P2). 

 
Figure 9. Simulation Program Scheme 



The performance of the simulation program depends on 
the manner in which the dynamical variables and 
constraints are partitioned into the groups described 
above. In order to see why, consider the following: In the 
context of real-time animation, the system derivative 
function must be evaluated many times per second. When 
a rigid-body system includes more than a few variables, 
the system derivative usually cannot be solved 
analytically. Instead, it must be computed by solving a 
system of linear equations whose size is equal to the 
number of second-order dynamical variables |P2| plus the 
number of second-order constraints |C2|. Solving the 
linear system is an O(n3) process, where n = |P2|+|C2|  is 
the size of the linear system. We should therefore expect 
the performance of the simulation process to degrade 
rapidly if n becomes too large. On the other hand, 
performance will improve to the extent that we can 
formulate the simulation program in a way that places 
more variables in groups P0 and P1 (rather than P2) and 
more constraints in groups C0 and C1 (rather than C2), i.e., 
when constraints and variables are handled outside of the 
integration process, or when they are represented in terms 
of their first, rather than second derivatives.    
 
Our simulation programs incorporate several routines 
from the Numerical Recipes [2] library, including a 
Runge-Kutta routine for integration of differential 
equations; an LU decomposition routine for solving 
systems of linear algebraic equations, and a Newton-
Raphson routine for solving systems of nonlinear 
algebraic equations. We also use a modified version of 
the Newton-Raphson routine to solve under-constrained 
systems of nonlinear algebraic equations, in the program 
component that maintains the numerical stability of the 
simulation process.  Our approach to simulation of rigid-
body systems is based on numerical techniques described 
in [3]; however, we use a Runge-Kutta method, rather 
than a predictor-corrector method, for carrying out the 
main integration step. We also use a different method of 
maintaining numerical stability. 
 
5. Synthesis of Simulation Programs 
 
A number of questions must be answered in order to 
synthesize programs instantiating our simulation program 
scheme:  
 
• Handling of dynamical variables: For each 

dynamical variable, can it be placed in group P0 and 
updated outside the numerical integration process? If 
not, can it be placed in group P1 so that the variable 
appears in the integration, but its derivative does not? 
Or must it be placed in group P2 so that the variable 
and its first derivative both appear in the integration?  

• Handling of constraints: For each constraint, can it 
be placed in group C0 and enforced outside of the 
integration process in constraining variables in group 
P0? If not, can it be placed in group C1 and enforced 
inside the integration process by constraining first 
derivatives of variables in group P1? Or must it be 
placed in group C2, enforced during the integration 
process by constraining second derivatives of 
variables in group P2, and appear in the Euler-
Lagrange equations?  

• Solution methods: What computational method 
should be used to solve each equation or enforce 
each constraint? Analytic solution? Numeric 
solution? If numeric, what numerical method should 
be used?  

• Decomposition: Can the numerical integration or 
any of the numerical equation or constraint solutions 
be decomposed into components that can be solved 
independently of each other?  (We have addressed 
only the first three groups of questions in our work to 
date. We plan to investigate decomposition 
techniques in our future work.) 

 
Our program synthesis algorithm is outlined in Figure 10. 
The algorithm begins by constructing an initial version of 
the Lagrangian, based on the input specification. The 
main part of the algorithm concerns partitioning of 
dynamical variables into classes P0, P1 and P2 and 
partitioning constraints into classes C0, C1 and C2, based 
on the analytic solvability of groups of constraints and 
their derivatives. Along the way, the constraints are 
rewritten into equivalent forms referencing smaller sets of 
variables. The Euler-Lagrange equations are formulated 
to include a subset of the original constraints and a subset 
of the original variables. 
 
The behavior of our program synthesis algorithm can be 
illustrated by considering the roller coaster example. In 
the initial formulation, the roller coaster specification has 
thirteen dynamical variables and twelve constraints. 
These sets of variables and constraints are classified in 
the following way: In step (3b), the car altitude constraint 
is solved analytically to obtain a value of the dynamical 
variable Tz[Car] as a function of the car’s angle of 
revolution around the center of the track. The altitude 
constraint is placed in the constraint group C0, and the 
variable Tz[Car] is placed in the variable group P0. The 
variable Tz[Car] is eliminated from the Lagrangian. On 
the other hand, the car pitch angle constraint (on variables 
Rw[Car] and Rx[Car]) and the associated quaternion 
normalization constraint do not yield a unique analytic 
solution for the pitch angle. Nevertheless, in step (3c), the 
first derivative of these constraints is found to have a 
unique analytic solution. The pitch angle and quaternion 
normalization constraints are placed in constraint group 



C1 and the variables Rw[Car] and Rx[Car] are placed in 
variable group P1. Since the Lagrangian does not depend 
on the derivative of the pitch angle, it is not further 
revised in this step.  In a similar manner, all of the wheel 
rotation constraints, and (the derivatives of) their 
associated quaternion normalization constraints, are 
solved analytically. All of the wheel rotation constraints 
are placed in constraint group C1, and all of the wheel 
rotation variables are placed in variable group P1. Once 
again, since the Lagrangian does not depend on the 
derivatives of the wheel rotation variables, it is not further 
revised at this point. Finally, in step (3d), the variables 
Rw[CarOrigin] and Rz[CarOrigin] are placed in the 
group P2, and the quaternion normalization constraint 
associated with these variables is placed in constraint 
group C2. A naïve implementation of the roller coaster 
would have placed all 13 variables in group P2 and all 12 
constraints in group C2, resulting in a system derivative 
function that solves a linear system of 25 equations and 
unknowns. After classifying the variables and constraints 
as described above, computation of the system derivative 
requires solving several linear systems, the largest of 
which has 3 equations and unknowns, and each of which 
is small enough to be solved analytically. 
 
The final step in program synthesis is to generate C++ 
code implementing each component of the simulation 
program scheme. Generation of code is carried out by 
instantiating several predefined schemata. Each schema 
describes a function that solves one or more sets of 
equations. The instantiation process begins by 
determining whether an analytic solution is available. If 
so, the analytic solution is incorporated directly into the 
function schema using a procedure that converts algebraic 
Mathematica expressions into equivalent C++ strings. If a 
numerical solution method is required, the system 
chooses an appropriate method (e.g., LU decomposition 
for linear equations or Newton-Raphson for nonlinear 
equations) and generates code that calculates the data 
used in the selected method (e.g., a matrix for LU 
decomposition or an array of residual values for Newton-
Raphson), again by converting algebraic Mathematica 
expressions to C++ strings for each matrix or array entry.  
Many large and complicated sub-expressions appear in 
multiple locations in the resulting code. For this reason, 
we carry out an optimization step that identifies repeated 
sub-expressions, stores them in temporary variables, and 
arranges for their values to be referenced whenever they 
are needed.  
 
Our system is implemented in Mathematica, using its 
facilities for algorithmically manipulating and applying 
transformation rules. Most of the implementation consists 
of purely declarative rules implementing knowledge of  
kinematics (reasoning about coordinate systems, 

coordinate transformations, velocities, angular velocities, 
kinetic energy and potential energy, and for constructing 
the Lagrangian function); geometry (formulating 
constraints involving surfaces, normal vectors and contact 
between surfaces); dynamics (constructing the Euler-
Lagrange equations) and numerical methods (selecting 
methods for solving equations and constraints). The 
algorithmic portion of our system includes the procedure 
for classifying variables and constraints, and the 
procedures for generating C++ code, both of which use 
some imperative features of the Mathematica language. 
Our system also uses Mathematica’s tools for symbolic 
differentiation, analytic solution of algebraic equations, 
and simplification of algebraic expressions. 
 
1. Let V be the set of all dynamical variables and C be 

the set of all constraints.  
2. Construct the system Lagrangian L by expanding the 

definitions of kinetic and potential energy. 
3. Partition V into classes P0, P1 and P2 and partition C 

into classes C0, C1 and C2:  
a. Partition C into holonomic constraints H and 

nonholonomic constraints N, based on 
whether they depend on derivatives of 
dynamical variables.  

b. Find the largest P0 ⊆  V and C0 ⊆  H such 
that C0 can be solved analytically for P0 in 
terms of variables in V-P0. Let V=V-P0. Let 
V' be the derivatives of variables in V.  Let 
H=H-C0. Let H' be the derivatives of 
constraints in H. Rewrite H' and N to be free 
of variables in P0 and their derivatives. 

c. Find the largest P1 ⊆  V and C1' ⊆  H'∪ N 
such that C1' can be solved analytically for 
P1' in terms of variables in V∪ (V'-P1'). Let 
P2=V-P1. Let C2'=(H'∪ N)-C1'. Let C2'' be the 
derivatives of the constraints in C2'. Rewrite 
C2' and C2'' to be free of variables in P1' and 
their derivatives.  

4. Construct the Euler-Lagrange equations EL from the 
Lagrangian L and constraints C2', all of which are 
nonholonomic, since the holonomic ones were 
differentiated with respect to time. Rewrite EL to be 
free of variables in P0 and P1' and their derivatives, 
using formulae obtained from solving constraints in 
C0  and C1' above.  

5. Generate code for each of the program components 
in the simulation program scheme: For each 
component that solves a system of equations, use an 
analytic solution, if possible. Otherwise, if the 
equations are linear, use a numerical method for 
solving linear equations. Otherwise use a numerical 
routine for solving nonlinear equations. 

 
Figure 10. Program Synthesis Algorithm 



 
6. Experimental Results 
 
Our system has been successfully tested on roughly a 
dozen qualitatively distinct example problems. A 
summary of these results is shown in Figure 11. In each 
of these example programs, the developer carried out the 
following steps: (1) Enter the graphical and symbolic 
components of the specification; (2) Execute the program 
synthesis algorithm; (3) Compile the generated C++ code;  
(4) Execute the resulting animation program. The 
program synthesis phase takes a period of time ranging 
from about 30 seconds on the simplest problems to about 
25 minutes on the most complicated. We have not made 
any great effort to optimize the speed of our program 
synthesis system.  We therefore expect that these times 
may be considerably reduced in future implementations 
of our system.  
 
• Pendulum: Demonstrates basic system operation.  
• Double Pendulum: One pendulum hangs off 

another. Demonstrates coordinate system hierarchy. 
• Three Body Planetary System: Demonstrates use of 

a Newtonian gravitational potential. 
• Two Spring-Coupled Pendula: Two pendula are 

linked by a spring. Demonstrates use of a potential 
describing Hooke’s law. 

• Two Rigidly Linked Pendula: Two pendula are 
linked by a rigid rod. Demonstrates handling of 
constraint systems forming a graph, not a tree. 

• Pendula on Spinning Wheel: Four pendula are 
attached to wheel spinning with uniform angular 
velocity. Demonstrates use of a time-dependent 
holonomic constraint. 

• Nested Rolling Toruses: One torus rolls along the 
inner circumference of a second torus, which rolls 
along the inner circumference of a third torus. 
Demonstrates nonholonomic constraints. 

• Weighted Ball Rolling on Plane: Ball with off-
center weight rolls erratically across a plane. 
Demonstrates rotation in three dimensions.  

• Torus Rolling on Plane: Tilted torus rolls and spins 
on plane. Demonstrates use of a dummy object to 
track a point of contact between two surfaces.  

• Ball Rolling Inside Torus: A ball rolls on the 
interior surface of a torus. Demonstrates rolling 
contact between two implicit surfaces. 

• Single-Car Roller Coaster: Demonstrates 
partitioning of variables and constraints.  

• Multi-Car Sliding Coaster: Five cars and no 
wheels. Constraints enforce fixed distances between 
cars. 

 
Figure 11. Summary of Experimental Results 

 

             
 

Figure 12. Acrobat on Trapeze 
 

 
 

Figure 13. Dancing Snowman 
 
The reader may come away with the impression that the 
example programs described in Figure 11 are mere 
exercises in basic mechanics. This is partly true; however, 
our most dramatic programs result from exploiting the 
manner in which the dynamical variables of simulation 
are linked to the visual aspects of a physical scenario. 
Recall that the developer may attach arbitrary visual 
objects (surfaces, lights and cameras) to the leaves of the 



coordinate system hierarchy defined in the graphical 
interface. As the simulation unfolds over time, the 
positions, sizes and orientations of these objects may 
change as well. The user may view the scene from the 
point of view of any of the cameras. Some of the resulting 
effects are illustrated in Figures 12 and 13. With the right 
choice of geometry, lights and cameras, the double 
pendulum becomes an “Acrobat on Trapeze”, and the ball 
with off-center weight rolling erratically on a plane 
becomes a “Dancing Snowman”. 

 
7. Related Work  
 
A number of other investigators have also developed 
automated program synthesis techniques for scientific and 
numerical computation. The Synapse, Agnes and Ctadel 
systems are similar to the one we have developed in our 
work. These systems synthesize programs for solving 
certain types of partial differential equations (PDEs). 
Synapse [4] constructs finite element codes, using a 
knowledge base of transformation rules implemented in 
Mathematica.  Agnes [5] constructs numerical codes by 
matching input equations to templates, in order to choose 
an appropriate solution method.  Ctadel [6] generates 
code that runs on sequential, vector and shared virtual and 
distributed memory architectures. The Sigma, Amphion 
and AutoBayes systems are also similar to the one we 
have developed. In Sigma [7], scientific computation 
problems are specified in terms of a data-flow model, 
which is executed by an interpreter. In Amphion [8], 
problem specifications are represented in first-order logic. 
Amphion uses a deductive method to synthesize a 
numerical program that meets the specification. 
AutoBayes [9] generates data analysis programs from 
declarative descriptions of problem variables and 
probability distributions. It uses schema-guided deductive 
synthesis, augmented by symbolic-algebraic computation 
techniques. Nevertheless, despite these similarities, none 
of these systems was designed to handle, or is capable of 
handling, rigid-body simulation problems.   
 
Methods of automating the synthesis of planning and 
scheduling programs are reported in [10] and [11].  These 
techniques operate, in part, by assigning each problem 
constraint to be enforced in an appropriate part of the 
program being generated. Despite this surface similarity, 
the applications are so different (symbolic search versus 
numerical simulation) that the respective program 
synthesis techniques do not appear to be transferable from 
either type of application to the other.  
 
The first author’s previous work developed deductive 
methods of synthesizing numerical simulation programs 
for specifications composed of algebraic and differential 
equations, with a focus on engineering design 

applications [12]. In that work, the algebraic and 
differential equations were fairly simple. The complexity 
of program synthesis resulted from the variety of logical 
forms of specifications and the corresponding variety of 
program architectures for combining numerical codes for 
integration of differential equations and finding of roots 
of algebraic equations. In the present work, focusing on 
synthesis of simulators for rigid-body systems, the 
architecture for combining numerical codes is relatively 
fixed. On the other hand, the algebraic and differential 
equations themselves are much more complex. 
Furthermore, the synthesis process requires the use of 
specialized symbolic computation techniques for solving 
algebraic equations, differentiating constraints and 
simplifying expressions, which are more efficiently 
carried out by specialized algorithms, as implemented in a 
system like Mathematica, rather than a general theorem-
proving mechanism. Finally, in the present work, we have 
addressed the problem of finding an efficient 
implementation, rather than merely a correct 
implementation. Standard methods of deductive synthesis 
are not capable of distinguishing between two correct 
implementations of differing efficiency. These differences 
motivated our effort to develop the specialized methods 
of manipulating the equations and assigning them to 
components of the simulator architecture, as described 
above. 
 
Meta-Amphion [13] is a program synthesis system that 
generates other, domain-specific, program synthesis 
systems. The domain specific systems incorporate 
specialized decision procedures into formal deductive 
methods of program synthesis. In our work, specialized 
symbolic algebra procedures are an important component 
of our system’s capabilities. It would be interesting to 
investigate whether a system like Meta-Amphion could 
synthesize a domain-specific program synthesis system 
for constructing rigid-body simulation programs, such as 
the one we have presented here. 
 
8. Contributions 
 
Our research is a contribution to the field of Automated 
Software Engineering in several different respects. To 
begin with, real-time 3D animation is becoming a 
progressively more important part of the software 
industry. It is now commonly used in computer and video 
games, as well as in many educational and scientific 
application programs. As network and processor speeds 
rise, we expect real-time 3D animation to commonly 
appear in other contexts, such as web pages and user 
interfaces to application programs. We have automated 
the synthesis of an important class of real-time 3D 
animation programs, i.e., those involving constrained 
systems of rigid bodies. Our research is therefore a 



contribution toward automating a portion of the software 
engineering problem, the importance of which will grow 
in the coming years. In addition, our classification-based 
approach to program synthesis may be applicable to other 
kinds of software, in which equations and constraints are 
assigned to be handled in various components of a 
relatively fixed program architecture. For example, we 
believe it would be useful in the context of engineering 
design problems that use a software architecture 
combining numerical simulation and optimization codes, 
as described in [14]. Finally, our approach illustrates a 
methodology that exploits the tradeoff between the power 
and the generality of a program synthesis system. Our 
system is a compromise between deductive methods of 
program synthesis and conventional parameter-driven 
program generators. On the one hand, we have sacrificed 
the generality of formal deductive synthesis. In return, we 
have obtained a system in which the computational costs 
of program synthesis are more in line with conventional 
program generator technology. On the other hand, our 
system uses a declarative specification language and a 
declarative knowledge base, which provide more 
maintainability and transparency than are typically seen in 
conventional program generators. We expect that 
approaches to program synthesis manifesting this sort of 
compromise would be useful in other areas of Automated 
Software Engineering as well.  
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